metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.96D10, C10.522- 1+4, C4⋊C4.273D10, D10⋊Q8⋊5C2, C42⋊2D5⋊5C2, C42⋊D5⋊3C2, C20.6Q8⋊7C2, (C4×Dic10)⋊10C2, C42⋊C2⋊15D5, (C4×C20).26C22, (C2×C10).75C24, C22⋊C4.99D10, (C2×C20).150C23, Dic5⋊4D4.6C2, Dic5.Q8⋊5C2, (C22×C4).196D10, C4⋊Dic5.35C22, Dic5.33(C4○D4), Dic5.14D4⋊5C2, C23.D5.5C22, C22.19(C4○D20), (C2×Dic5).28C23, C22.D20.2C2, (C22×D5).23C23, C22.104(C23×D5), C23.160(C22×D5), D10⋊C4.63C22, C23.11D10⋊26C2, (C22×C10).145C23, (C22×C20).436C22, C5⋊3(C22.46C24), (C4×Dic5).217C22, C23.23D10.4C2, C10.D4.99C22, C2.10(D4.10D10), (C2×Dic10).239C22, (C22×Dic5).89C22, C4⋊C4⋊D5⋊5C2, C2.14(D5×C4○D4), C2.34(C2×C4○D20), C10.31(C2×C4○D4), (C2×C4×D5).244C22, (C5×C42⋊C2)⋊17C2, (C2×C10).42(C4○D4), (C2×C10.D4)⋊46C2, (C5×C4⋊C4).311C22, (C2×C4).277(C22×D5), (C2×C5⋊D4).10C22, (C5×C22⋊C4).139C22, SmallGroup(320,1203)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C5⋊D4 — Dic5⋊4D4 — C42.96D10 |
Generators and relations for C42.96D10
G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=dad-1=ab2, bc=cb, dbd-1=a2b, dcd-1=b2c-1 >
Subgroups: 662 in 214 conjugacy classes, 97 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C42.C2, C42⋊2C2, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C22.46C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C22×Dic5, C2×C5⋊D4, C22×C20, C4×Dic10, C20.6Q8, C42⋊D5, C42⋊2D5, C23.11D10, Dic5.14D4, Dic5⋊4D4, C22.D20, Dic5.Q8, D10⋊Q8, C4⋊C4⋊D5, C2×C10.D4, C23.23D10, C5×C42⋊C2, C42.96D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2- 1+4, C22×D5, C22.46C24, C4○D20, C23×D5, C2×C4○D20, D5×C4○D4, D4.10D10, C42.96D10
(1 115 95 32)(2 71 96 144)(3 117 97 34)(4 73 98 146)(5 119 99 36)(6 75 100 148)(7 111 91 38)(8 77 92 150)(9 113 93 40)(10 79 94 142)(11 69 41 132)(12 105 42 22)(13 61 43 134)(14 107 44 24)(15 63 45 136)(16 109 46 26)(17 65 47 138)(18 101 48 28)(19 67 49 140)(20 103 50 30)(21 85 104 152)(23 87 106 154)(25 89 108 156)(27 81 110 158)(29 83 102 160)(31 122 114 59)(33 124 116 51)(35 126 118 53)(37 128 120 55)(39 130 112 57)(52 145 125 72)(54 147 127 74)(56 149 129 76)(58 141 121 78)(60 143 123 80)(62 155 135 88)(64 157 137 90)(66 159 139 82)(68 151 131 84)(70 153 133 86)
(1 133 123 22)(2 134 124 23)(3 135 125 24)(4 136 126 25)(5 137 127 26)(6 138 128 27)(7 139 129 28)(8 140 130 29)(9 131 121 30)(10 132 122 21)(11 114 85 79)(12 115 86 80)(13 116 87 71)(14 117 88 72)(15 118 89 73)(16 119 90 74)(17 120 81 75)(18 111 82 76)(19 112 83 77)(20 113 84 78)(31 152 142 41)(32 153 143 42)(33 154 144 43)(34 155 145 44)(35 156 146 45)(36 157 147 46)(37 158 148 47)(38 159 149 48)(39 160 150 49)(40 151 141 50)(51 106 96 61)(52 107 97 62)(53 108 98 63)(54 109 99 64)(55 110 100 65)(56 101 91 66)(57 102 92 67)(58 103 93 68)(59 104 94 69)(60 105 95 70)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 123 122)(2 121 124 9)(3 8 125 130)(4 129 126 7)(5 6 127 128)(11 153 85 42)(12 41 86 152)(13 151 87 50)(14 49 88 160)(15 159 89 48)(16 47 90 158)(17 157 81 46)(18 45 82 156)(19 155 83 44)(20 43 84 154)(21 70 132 105)(22 104 133 69)(23 68 134 103)(24 102 135 67)(25 66 136 101)(26 110 137 65)(27 64 138 109)(28 108 139 63)(29 62 140 107)(30 106 131 61)(31 143 142 32)(33 141 144 40)(34 39 145 150)(35 149 146 38)(36 37 147 148)(51 93 96 58)(52 57 97 92)(53 91 98 56)(54 55 99 100)(59 95 94 60)(71 113 116 78)(72 77 117 112)(73 111 118 76)(74 75 119 120)(79 115 114 80)
G:=sub<Sym(160)| (1,115,95,32)(2,71,96,144)(3,117,97,34)(4,73,98,146)(5,119,99,36)(6,75,100,148)(7,111,91,38)(8,77,92,150)(9,113,93,40)(10,79,94,142)(11,69,41,132)(12,105,42,22)(13,61,43,134)(14,107,44,24)(15,63,45,136)(16,109,46,26)(17,65,47,138)(18,101,48,28)(19,67,49,140)(20,103,50,30)(21,85,104,152)(23,87,106,154)(25,89,108,156)(27,81,110,158)(29,83,102,160)(31,122,114,59)(33,124,116,51)(35,126,118,53)(37,128,120,55)(39,130,112,57)(52,145,125,72)(54,147,127,74)(56,149,129,76)(58,141,121,78)(60,143,123,80)(62,155,135,88)(64,157,137,90)(66,159,139,82)(68,151,131,84)(70,153,133,86), (1,133,123,22)(2,134,124,23)(3,135,125,24)(4,136,126,25)(5,137,127,26)(6,138,128,27)(7,139,129,28)(8,140,130,29)(9,131,121,30)(10,132,122,21)(11,114,85,79)(12,115,86,80)(13,116,87,71)(14,117,88,72)(15,118,89,73)(16,119,90,74)(17,120,81,75)(18,111,82,76)(19,112,83,77)(20,113,84,78)(31,152,142,41)(32,153,143,42)(33,154,144,43)(34,155,145,44)(35,156,146,45)(36,157,147,46)(37,158,148,47)(38,159,149,48)(39,160,150,49)(40,151,141,50)(51,106,96,61)(52,107,97,62)(53,108,98,63)(54,109,99,64)(55,110,100,65)(56,101,91,66)(57,102,92,67)(58,103,93,68)(59,104,94,69)(60,105,95,70), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,153,85,42)(12,41,86,152)(13,151,87,50)(14,49,88,160)(15,159,89,48)(16,47,90,158)(17,157,81,46)(18,45,82,156)(19,155,83,44)(20,43,84,154)(21,70,132,105)(22,104,133,69)(23,68,134,103)(24,102,135,67)(25,66,136,101)(26,110,137,65)(27,64,138,109)(28,108,139,63)(29,62,140,107)(30,106,131,61)(31,143,142,32)(33,141,144,40)(34,39,145,150)(35,149,146,38)(36,37,147,148)(51,93,96,58)(52,57,97,92)(53,91,98,56)(54,55,99,100)(59,95,94,60)(71,113,116,78)(72,77,117,112)(73,111,118,76)(74,75,119,120)(79,115,114,80)>;
G:=Group( (1,115,95,32)(2,71,96,144)(3,117,97,34)(4,73,98,146)(5,119,99,36)(6,75,100,148)(7,111,91,38)(8,77,92,150)(9,113,93,40)(10,79,94,142)(11,69,41,132)(12,105,42,22)(13,61,43,134)(14,107,44,24)(15,63,45,136)(16,109,46,26)(17,65,47,138)(18,101,48,28)(19,67,49,140)(20,103,50,30)(21,85,104,152)(23,87,106,154)(25,89,108,156)(27,81,110,158)(29,83,102,160)(31,122,114,59)(33,124,116,51)(35,126,118,53)(37,128,120,55)(39,130,112,57)(52,145,125,72)(54,147,127,74)(56,149,129,76)(58,141,121,78)(60,143,123,80)(62,155,135,88)(64,157,137,90)(66,159,139,82)(68,151,131,84)(70,153,133,86), (1,133,123,22)(2,134,124,23)(3,135,125,24)(4,136,126,25)(5,137,127,26)(6,138,128,27)(7,139,129,28)(8,140,130,29)(9,131,121,30)(10,132,122,21)(11,114,85,79)(12,115,86,80)(13,116,87,71)(14,117,88,72)(15,118,89,73)(16,119,90,74)(17,120,81,75)(18,111,82,76)(19,112,83,77)(20,113,84,78)(31,152,142,41)(32,153,143,42)(33,154,144,43)(34,155,145,44)(35,156,146,45)(36,157,147,46)(37,158,148,47)(38,159,149,48)(39,160,150,49)(40,151,141,50)(51,106,96,61)(52,107,97,62)(53,108,98,63)(54,109,99,64)(55,110,100,65)(56,101,91,66)(57,102,92,67)(58,103,93,68)(59,104,94,69)(60,105,95,70), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,153,85,42)(12,41,86,152)(13,151,87,50)(14,49,88,160)(15,159,89,48)(16,47,90,158)(17,157,81,46)(18,45,82,156)(19,155,83,44)(20,43,84,154)(21,70,132,105)(22,104,133,69)(23,68,134,103)(24,102,135,67)(25,66,136,101)(26,110,137,65)(27,64,138,109)(28,108,139,63)(29,62,140,107)(30,106,131,61)(31,143,142,32)(33,141,144,40)(34,39,145,150)(35,149,146,38)(36,37,147,148)(51,93,96,58)(52,57,97,92)(53,91,98,56)(54,55,99,100)(59,95,94,60)(71,113,116,78)(72,77,117,112)(73,111,118,76)(74,75,119,120)(79,115,114,80) );
G=PermutationGroup([[(1,115,95,32),(2,71,96,144),(3,117,97,34),(4,73,98,146),(5,119,99,36),(6,75,100,148),(7,111,91,38),(8,77,92,150),(9,113,93,40),(10,79,94,142),(11,69,41,132),(12,105,42,22),(13,61,43,134),(14,107,44,24),(15,63,45,136),(16,109,46,26),(17,65,47,138),(18,101,48,28),(19,67,49,140),(20,103,50,30),(21,85,104,152),(23,87,106,154),(25,89,108,156),(27,81,110,158),(29,83,102,160),(31,122,114,59),(33,124,116,51),(35,126,118,53),(37,128,120,55),(39,130,112,57),(52,145,125,72),(54,147,127,74),(56,149,129,76),(58,141,121,78),(60,143,123,80),(62,155,135,88),(64,157,137,90),(66,159,139,82),(68,151,131,84),(70,153,133,86)], [(1,133,123,22),(2,134,124,23),(3,135,125,24),(4,136,126,25),(5,137,127,26),(6,138,128,27),(7,139,129,28),(8,140,130,29),(9,131,121,30),(10,132,122,21),(11,114,85,79),(12,115,86,80),(13,116,87,71),(14,117,88,72),(15,118,89,73),(16,119,90,74),(17,120,81,75),(18,111,82,76),(19,112,83,77),(20,113,84,78),(31,152,142,41),(32,153,143,42),(33,154,144,43),(34,155,145,44),(35,156,146,45),(36,157,147,46),(37,158,148,47),(38,159,149,48),(39,160,150,49),(40,151,141,50),(51,106,96,61),(52,107,97,62),(53,108,98,63),(54,109,99,64),(55,110,100,65),(56,101,91,66),(57,102,92,67),(58,103,93,68),(59,104,94,69),(60,105,95,70)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,123,122),(2,121,124,9),(3,8,125,130),(4,129,126,7),(5,6,127,128),(11,153,85,42),(12,41,86,152),(13,151,87,50),(14,49,88,160),(15,159,89,48),(16,47,90,158),(17,157,81,46),(18,45,82,156),(19,155,83,44),(20,43,84,154),(21,70,132,105),(22,104,133,69),(23,68,134,103),(24,102,135,67),(25,66,136,101),(26,110,137,65),(27,64,138,109),(28,108,139,63),(29,62,140,107),(30,106,131,61),(31,143,142,32),(33,141,144,40),(34,39,145,150),(35,149,146,38),(36,37,147,148),(51,93,96,58),(52,57,97,92),(53,91,98,56),(54,55,99,100),(59,95,94,60),(71,113,116,78),(72,77,117,112),(73,111,118,76),(74,75,119,120),(79,115,114,80)]])
65 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | ··· | 4R | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20AB |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 20 | 2 | ··· | 2 | 4 | 4 | 4 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
65 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | C4○D20 | 2- 1+4 | D5×C4○D4 | D4.10D10 |
kernel | C42.96D10 | C4×Dic10 | C20.6Q8 | C42⋊D5 | C42⋊2D5 | C23.11D10 | Dic5.14D4 | Dic5⋊4D4 | C22.D20 | Dic5.Q8 | D10⋊Q8 | C4⋊C4⋊D5 | C2×C10.D4 | C23.23D10 | C5×C42⋊C2 | C42⋊C2 | Dic5 | C2×C10 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C22 | C10 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 2 | 16 | 1 | 4 | 4 |
Matrix representation of C42.96D10 ►in GL4(𝔽41) generated by
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 40 | 1 |
18 | 35 | 0 | 0 |
6 | 23 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 32 |
6 | 6 | 0 | 0 |
35 | 1 | 0 | 0 |
0 | 0 | 1 | 39 |
0 | 0 | 0 | 40 |
6 | 6 | 0 | 0 |
1 | 35 | 0 | 0 |
0 | 0 | 40 | 2 |
0 | 0 | 40 | 1 |
G:=sub<GL(4,GF(41))| [9,0,0,0,0,9,0,0,0,0,40,40,0,0,0,1],[18,6,0,0,35,23,0,0,0,0,32,0,0,0,0,32],[6,35,0,0,6,1,0,0,0,0,1,0,0,0,39,40],[6,1,0,0,6,35,0,0,0,0,40,40,0,0,2,1] >;
C42.96D10 in GAP, Magma, Sage, TeX
C_4^2._{96}D_{10}
% in TeX
G:=Group("C4^2.96D10");
// GroupNames label
G:=SmallGroup(320,1203);
// by ID
G=gap.SmallGroup(320,1203);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,387,100,675,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=b^2*c^-1>;
// generators/relations